design of Synchronous Controller to Minimize Response time and Power (type Research)	
Date : 03/02/201503/06/2014	2015/10/01 - 2018/09/30
Encadrant(s) : Bouraoui ouni	2013/10/01 - 2018/07/30
Description: As power dissipation and time constraint have	
Description. As power dissipation and time constraint have	
become vital challenges during the creation of a digital circuit,	[1] Choudhury, Priyanka, Pradhan, Sambhu Nath "An Approach for
researchers and designers efforts have increased to figure out	Low Power Design of Power Gated Finite State Machines Considering
new ways of preserving power through the study of its sources	Partitioning and State Encoding Together" Journal of Low Power
and its impacts as well as through the decrease of response time	Electronics, Volume 8, Number 4, August 2012, pp. 452-463(12)
to obtain faster circuits. However, it is widely acknowledged	[2] Jason Cong, Wei Jiang, Bin Liu, Yi Zou, "Automatic memory
that these two parameters are antagonistic in synchronous	partitioning and scheduling for throughput and power
systems. In fact the current technologies have only managed to	optimization", Computer-Aided Design - Digest of Technical Papers,
further decrease the response time to have a faster circuit at the	2009. ICCAD 2009. IEEE/ACM International Conference on 2-5 Nov. 2009
cost of a considerable simultaneous augmentation in its power	NOV. 2009
or vice versa which leaves no option for designers but to	
choose from these two important parameters. Hence, our main	
objective is to develop a design method that simultaneously	
builds a low power design and provides a faster circuit. For the	
achievement of that purpose, we have chosen a controller based	
on a finite state machine (FSM) as an example of synchronous	
system to prove that our design can optimize both parameters:	
time and power.	
Mots clés : design controller, FSM, Power	
Département(s) : EI	
Financement :	