Algorithms for multi-component digital systems to minimize dynamic power	
Date : 03/02/201503/06/2014	2015/10/01 - 2018/09/30
Encadrant(s) : Bouraoui ouni	
Description: The aim is to develop new scheduling algorithms	
that provide a decrease in dynamic power consumption through	[1] B. Suresh Babu. A.
achieving components scheduling. The major idea of those	Shunmugalatha, "Reducing Power Losses in Power System by Using
algorithms is to amplify the latency of some components	Self Adaptive Firefly Algorithm", Swarm, Evolutionary, and Memetic
whenever it is feasible without negatively influencing the	Computing Lecture Notes in Computer Science Volume 8297,
dependency constraints. For that purpose, we need to decrease	2013, pp 122-132 [2] Lizhe Wang, von Laszewski, G.
the frequency of the components clocks. Since frequency and	Dayal, J.,Fugang Wang, "Towards Energy Aware Scheduling for
power are inter-related, a decrease in frequency value will be	Precedence Constrained Parallel Tasks in a Cluster with DVFS",
followed by a decrease in power consumption.	IEEE/ACM International Conference Cluster, Cloud and Grid
	Computing (CCGrid), 2010
Mots clés : algorithm , dynamic power,	
Département(s) : EI	
Financement :	